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Abstract: In this paper, we first study a new two parameter lifetime distribution. This distribution
includes “monotone” and “non-monotone” hazard rate functions which are useful in lifetime data
analysis and reliability. Some of its mathematical properties including explicit expressions for the
ordinary and incomplete moments, generating function, Renyi entropy, δ-entropy, order statistics and
probability weighted moments are derived. Non-Bayesian estimation methods such as the maximum
likelihood, Cramer-Von-Mises, percentile estimation, and L-moments are used for estimating the
model parameters. The importance and flexibility of the new distribution are illustrated by means of
two applications to real data sets. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit
test for the right censored validation, we then propose and apply a modified chi-square goodness-of-fit
test for the Burr X Weibull model. The modified goodness-of-fit statistics test is applied for the
right censored real data set. Based on the censored maximum likelihood estimators on initial data,
the modified goodness-of-fit test recovers the loss in information while the grouped data follows the
chi-square distribution. The elements of the modified criteria tests are derived. A real data application
is for validation under the uncensored scheme.

Keywords: Bagdonavicius–Nikulin; Burr X Family; non-Bayesian methods; maximum likelihood
estimation; Cramer-Von-Mises; moments; order statistics; L-moments; percentile estimation;
Weibull model

1. Introduction

Focusing on one of the most popular positive probability models, the Weibull (W) distribution,
in this paper, we introduce a new generalization called the Burr X Weibull (BXW). The W model
was proposed in 1951 and is widely used in reliability analysis and in several different fields with
different applications, see, for example, ([1]). Although it includes widely usage, a negative point of
the distribution is the limited shape of its hazard function, which can only monotonically increase,
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decrease, or remain constant. Generally, practical problems require a wider range of possibilities in the
medium risk, for example, when the lifetime data present a bathtub-shaped hazard function, such as
human mortality and machine life cycles. Over several years, researchers have developed various
extensions and modified forms of the Weibull distribution with different numbers of parameters.
A state-of-the-art survey on the class of such distributions can be found in ([1]). Some extensions of the
W distribution with more than two parameters are available in the literature, such as exponentiated
W (Exp-W) ([2,3]), the additive W ([4]), the Marshall–Olkin extended W ([5]), the beta inverse W
([6]), transmuted exponentiated generatized W ([7]), Marshall–Olkin additive W ([8]), the Topp
Leone generated W distribution ([9]), the exponentiated generalized W Poisson ([10]), Type I general
exponential W ([11]), new four-parameter W ([12]), Burr XII W ([13]), Marshall–Olkin generalized
W Poisson ([14]), odd Lindley W ([15]), Lindley W ([16]), W generalized W ([17]), new extended W
([18]), Type II general exponential W ([19]), Burr X exponentiated W ([20]), odd power Lindley W ([21]),
odd Nadarajah-Haghighi W ([22]), and WW Poisson ([23]).

In this paper and after studying the mathematical properties of the BXW model, some non-Bayesian
methods, such as the maximum likelihood, Cramer-Von-Mises, percentile estimation, and L-moments,
is used for estimating the model parameters, are considered. For comparing non-Bayesian methods,
simulation studies are provided. The importance and flexibility of the new distribution is illustrated by
means of two applications of real data sets. Uncensored applications for comparing the non-Bayesian
methods are presented. The censored maximum likelihood estimation is derived and, using
the approach of the Bagdonavicius–Nikulin goodness-of-fit test for the right censored validation,
we propose and apply a modified chi-square goodness-of-fit test for a new model. The modified
goodness-of-fit statistics test was applied for the right censored real data set. Based on the censored
maximum likelihood estimators on initial data, the modified goodness-of-fit test recovered the loss
in information, while the grouped data followed the chi-square distribution. The elements of the
modified criteria tests are derived. Finally, a real data application for validation under the uncensored
scheme is presented.

2. The BXW Model

The cumulative distribution function (CDF) of the two parameter W distributions is given by

Gα,β(x) = 1− exp
(
−αxβ

)
,

where α > 0 scale parameter and β > 0 are shape parameters. Clearly, for α = 1, the two parameter W
model reduces to one parameter W model. For β = 1, we get the standard exponential model. The CDF
and the probability density function (PDF) of one parameter W model are

gβ(x) = βxβ−1exp
(
−xβ

)∣∣∣∣
(β>0, x>0)

and Gβ(x) = 1− exp
(
−xβ

)
, (1)

respectively. Depending on Equation (1), we defined and study a new lifetime model called the BXW
distribution. Its main characteristic is that one shape parameter is added in Equation (1) to provide
more flexibility for the generated distribution. Based on the Burr X-G (BX-G) family pioneered by [24]
we constructed the two-parameter BXW model and give a comprehensive description of some of its
mathematical properties. The new distribution has the advantage of being capable of modeling various
shapes of aging and failure criteria. Further, the BXW model is shown to fit better than at least six other
competitive models, each having the same number of parameters. We aim to attract wider applications
in engineering, medicine, and other areas of research. [24] defined the CDF of the BX-G family by

Fθ,ξ(x)
∣∣∣∣∣(θ>0, x∈R) =

{
1− exp

[
−∆ξ(x)

2
]}θ

, (2)



Entropy 2020, 22, 592 3 of 24

where ∆ξ(x) = Gξ(x)/[1−Gξ(x)] and ξ = ξk = (ξ1,ξ2, . . .) are parameter vectors. The CDF
corresponding to Equation (2) becomes

fθ,ξ(x) = 2θ
gξ(x)Gξ(x)

[1−Gξ(x)]
3 exp

{
−∆ξ(x)

2
}(

1− exp
{
−∆ξ(x)

2
})θ−1

, (3)

where θ is the shape parameter. A random variable (RV) X with PDF (3) is denoted by X ∼ BXG(θ, ξ). By
substituting Equation (1) with Equation (2), the two-parameter BXW CDF of X is given by (for x > 0):

Fθ,β(x)

∣∣∣∣∣∣(θ,β>0, x>0) =
(
1− exp

{
−

[
exp

(
xβ

)
− 1

]2
})θ

. (4)

The PDF corresponding to Equation (4) is given by

fθ,β(x) = 2θβxβ−1

[
1− exp

(
−xβ

)]
exp

{
2xβ −

[
exp

(
xβ

)
− 1

]2
}

(
1− exp

{
−[exp(xβ) − 1]2

})1−θ
(5)

where θ and β are the shape parameters representing the different shapes of the BXW distribution.
We denote a RV X with PDF (5) by X ∼ BXW(θ, β). The reliability function (RF), hazard rate function
(HRF), and cumulative hazard rate function (CHRF) of X are given by

fθ,β(x) = 2θβxβ−1

[
1− exp

(
−xβ

)]
exp

{
2xβ −

[
exp

(
xβ

)
− 1

]2
}

(
1− exp

{
−[exp(xβ) − 1]2

})1−θ
,

Rθ,β(x) = 1−
(
1− exp

{
−

[
exp

(
xβ

)
− 1

]2
})θ

,

hθ,β(x) =
2θβxβ−1

[
1− exp

(
−xβ

)]
exp

{
2xβ −

[
exp

(
xβ

)
− 1

]2
}θ−1

[1− (1− exp{−[exp(xβ) − 1]2})
θ
](1− exp{−[exp(xβ) − 1]2})

1−θ
,

and

Hθ,β(x) = −log
[
1−

(
1− exp

{
−

[
exp

(
xβ

)
− 1

]2
})θ]

,

respectively. The PDF and HRF plots of the BXW distribution for some parameters are given below.
Hereafter, we provide a very useful linear representation for the BXW density function.

First, we consider the two power series:

(
1−

u1

u2

)b−1
=
∞∑

i=0

Γ(b)
i!Γ(b− i)

(
−

u1

u2

)i
and

(
1−

u1

u2

)−b
=
∞∑

i=0

Γ(b + i)
i!Γ(b)

(u1

u2

)i
, (6)

where
∣∣∣∣u1
u2

∣∣∣∣ < 1 and b > 0. By using the above power series, and after performing some algebra, the PDF
(5) can be expressed as:

fθ,β(x) =
∞∑

j,k=0

ω j,k πk+2( j+1)(x), (7)

where

ω j,k = 2θ
(−1) jΓ(θ)Γ(2 j + k + 3)

j!k![k + 2( j + 1)]Γ(2 j + 3)

∞∑
i=0

(−1)i(i + 1) j

i!Γ(θ− i)
,
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and
πk+2( j+1)(x) = [k + 2( j + 1)]βxβ−1exp

(
−xβ

)[
1− exp

(
−xβ

)]k+2 j+1
.

Equation (7) reveals that the PDF of X can be expressed as a linear mixture of Exp-W densities.
Therefore, several mathematical properties of the new family can be obtained by knowing those of the
Exp-W distribution. Similarly, the CDF of the BXW distribution can also be expressed as a mixture of
Exp-W, CDF given by:

Fθ,β(x) =
∞∑

j,k=0

ω j,kΠk+2( j+1)(x), (8)

where
Πk+2( j+1)(x) =

[
1− exp

(
−xβ

)]k+2( j+1)

is the CDF of the Exp-W distribution with power parameter k + 2( j + 1). According to [25], the BXW
distribution can be expressed through the following functional composition:

Fθ,β(x) = Gθ
2 QLGβ(x),

where Gθ
2 is G2 to the power θ and QL refers to the quantile function of a loglogistic model with

parameters equal to 1, namely, the odds function:

QL(p) =
p

1− p

Reference [25] also studied the function QL(F), where F is any given CDF. In particular, QLGβ(x)
is a convex function; therefore, stochastic ordering properties of the BXW model can be derived
straightforwardly through Theorem 1 of [25].

Henceforth, Yk+2( j+1) denotes a RV with Exp-W distribution by power parameter k + 2( j + 1).
The PDF and CDF of Y are then given by

gβ(y) = β[k + 2( j + 1)]yβ−1exp
(
−yβ

)[
1− exp

(
−yβ

)]k+2 j+1
,

and
Gβ(y) =

[
1− exp

(
−yβ

)]k+2( j+1)
.

For any r > −β, the rth ordinary and incomplete moments of Y are given by

µ′r =
∞∑

h=0

wh|(r,k+2( j+1)) Γ
(
1 +

r
β

)
,

and

ϕr(y) =
∞∑

h=0

wh|(r,k+2( j+1)) γ

(
1 +

r
β

, yβ
)
,

respectively, where

wh|(r,k+2( j+1)) =
[k + 2( j + 1)](−1)hΓ(k + 2( j + 1))

h!Γ(k + 2( j + 1) − h)(h + 1)1+ r
β

.

Figure 1 below gives some pots of probability density function (PDF) (lest panel) and hazard rate
function (HRF) (right paned) of the Burr X Weibull (BXW) model to illustrate the importance of the
new model.
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3. Properties

3.1. Some Moments

The rth ordinary moment of X is given by:

µ′r = E(Xr) =

∫
∞

−∞

xr f (x)dx.

We then obtain (for any r > −β)

µ′r =
∞∑

j,k,h=0

wh|(r,k+2( j+1))ω j,kΓ
(
1 +

r
β

)
. (9)

Setting r = 1 in Equation (9), we have the mean of X. The last integration can be computed
numerically for most parent distributions. The sth incomplete moment, say us(t), of X can be expressed
using Equation (7), for s > −β, as

us(t) =
∫ t

−∞

xs f (x)dx =
∞∑

i, j,k=0

wh|(r,k+2( j+1))ω j,k γ

(
1 +

s
β

, tβ
)
. (10)

The mean deviations about the mean δ1 = E
(∣∣∣X − µ′1∣∣∣) and about the median δ2 = E(|X −M|) of X

are given by δ1 = 2µ′1F
(
µ′1

)
− 2u1

(
µ′1

)
and δ2 = µ′1 − 2u1(M), respectively, where µ′1 = E(X), M is the

median of X, F
(
µ′1

)
is easily calculated from Equation (4), and u1(t) is the first incomplete moment

given by (10) with s = 1, as

u1(t) =
∞∑

i, j,k=0

wh|(1,k+2( j+1))ω j,k γ

(
1 +

1
β

, tβ
)
.

The main applications of the first incomplete moment refer to the mean deviations and the
Bon-ferroni and Lorenz curves. These curves are very useful in economics, reliability, demography,
insurance, and medicine. The Lorenz, say LF and Bonferroni, say B[F(x)], curves are defined by

LF(x) =
1

E(X)

∫ x

0
t f (t)dt
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and

B[F(x)] =
1

E(X)F(x)

∫ x

0
t f (t)dt =

LF(x)
F(X)

,

respectively. Here, we derive LF(x) and B[F(x)] curves for the BXW distribution as follows:

LF(x) =

∑
∞

i, j,k=0 wh|(1,k+2( j+1))ω j,k γ
(
1 + 1

β , tβ
)

∑
∞

i, j,k=0 wh|(1,k+2( j+1))ω j,kΓ
(
1 + 1

β

)
and

B[F(x)] =

∑
∞

i, j,k=0 wh|(1,k+2( j+1))ω j,k γ
(
1 + 1

β , tβ
)

∑
∞

i, j,k=0 wh|(1,k+2( j+1))ω j,kΓ
(
1 + 1

β

) (
1− exp

{
−

[
exp

(
xβ

)
− 1

]2
})−θ

.

3.2. Generating Function

Let M(t) = Mk+2( j+1)(t) be the moment generating function (MGF) of Yk+2( j+1). Therefore, using
Equation (7), the MGF of X, say M(t) = E(exp(tx)), is given by

M(t) =
∞∑

j,k=0

ω j,kMk+2( j+1)(t; β),

where Mk+2( j+1)(t; β) is the MGF of the Exp-W model with power parameter k + 2( j + 1).

3.3. Probability Weighted Moments (PWMs)

The (s,r)th probability weighted moment (PWM) of X, following the BXW distribution, say ρs,r, is
formally defined by:

ρs,r = E
{
XsF(X)r

}
=

∫
∞

−∞

xsF(x)r f (x)dx.

Using Equations (4) and (5), we can write

f (x)F(x)r =
∞∑

j,k=0

q j,kβ[k + 2( j + 1)]xβ−1 exp
(
−xβ

)[
1− exp

(
−xβ

)]2 j+k+1
,

where

q j,k =
(−1) jΓ(2 j + k + 3)

j!k!Γ(2 j + 3)

∞∑
i=0

2θ(−1)i(i + 1) j
(
θ(r + 1) − 1

i

)
[k + 2( j + 1)]

.

Then, the (s,r)th PWM of X can be expressed (for s > −β) as

ρs,r =
∞∑

j,k=0

q j,kE
(
Ys

2 j+k+2

)
=

∞∑
i, j,k=0

wi|(s,k+2( j+1))q j,kΓ
(
1 +

s
β

)
.

3.4. Order Statistics

Let X1, X2, . . . , Xn be a random sample from the BXW distribution and let X(1), X(2), . . . , X(n) be
the corresponding order statistics. The PDF of the ith order statistic, say Xi:n, can be written as

fi:n(x) =
f (x)

B(i, n + i− 1)

n−i∑
j=0

(−1) j
(

n− i
j

)
F j+i−1(x), (11)
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where B(·, ·) is the beta function. Substituting Equations (4) and (5) in Equation (11) and using a power
series expansion, we have:

f (x)F(x)i+ j−1 =
∞∑

w,k=0

bw,kβ[k + 2(w + 1)]xβ−1exp
(
−xβ

)[
1− exp

(
−xβ

)]2w+k+1

where

bw,k = 2θ
(−1)wΓ(2w + k + 3)

w!k!Γ(2w + 3)

∞∑
m=0

(−1)m(m + 1)w

k + 2(w + 1)

(
θ(i + j) − 1

m

)
.

The PDF of Xi:n can be expressed as:

fi:n(x) =
∞∑

w,k=0

n−i∑
j=0

(−1) j

B(i, n− i + 1)

(
n− i

j

)
bw,kπk+2(w+1)(x).

The density function of the BXW order statistics is a mixture of Exp-W PDF. Based on the last
equation, we note that the properties of Xi:n follow from those properties of Y2w+k+2. For example,
the moments of Xi:n can be given (for q > −β) by:

E
(
Xq

i:n

)
=

∞∑
w,k,h=0

n−i∑
j=0

(−1) j
(

n− i
j

)
B(i, n− i + 1)

wh|(q,k+2(w+1))bw,kΓ
(
1 +

q
β

)
. (12)

3.5. Renyi and δ −Entropies

The Renyi entropy of a RV X represents a measure of variation of the uncertainty. The Renyi
entropy is defined by:

Iδ(X) =
1

1− δ
log

∫
∞

−∞

f (x)δdx
∣∣∣∣∣(δ>0, δ,1).

Using the PDF (5), the last equation the Renyi entropy of X is given by

Iδ(X) =
1

1− δ
log

 ∞∑
i, j,k,h=0

ti, j,k,hΓ
(
1 +

δβ− δ− β+ 1
β

),
where

ti, j,k,h =

2δθδβδ(−1)i+ j+hΓ(3δ+ 2 j + k)
(
θδ− δ

i

)(
δ+ 2 j + k

h

)
j!k!(δ+ i)− jΓ(3δ+ 2 j)(δ+ h)

δ(β−1)+1
β

.

The δ-entropy, say Hδ(X), can be obtained (for, δ > 0, δ , 1) as:

Hδ(X) =
1

1− δ
log

1−

 ∞∑
i, j,k,h=0

ti, j,k,hΓ
(
1 +

δ(β− 1) − β+ 1
β

)
.

4. Classical Parameter Estimation

Several approaches for parameter estimation were proposed in the literature. In this article, we
will consider the following methods:

I. The maximum likelihood method;
II. Method of Cramer-Von-Mises estimation;
III. Method of percentile estimation;
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IV. Method of L-moments.

4.1. The Maximum Likelihood Method

Let x1, x2, . . . , xn be a random sample from the BXW distribution with parameters θ and β.
Let φ = (θ, β)T be the 2 × 1 parameter vector. For determining the MLE of φ, we have the
log-likelihood function:

l = l(φ) = nlog2 + nlogθ+ nlogβ+ (β− 1)
n∑

i=1
log(xi) +

n∑
i=1

log(1− si)

+
n∑

i=1
log

(
2xβi − z2

i

)
+ (θ− 1)

n∑
i=1

log
(
1− exp

(
−z2

i

))
,

where
zi =

1− si
si

,

and
si = exp

(
−xβi

)
.

The components of the score vector

U(φ) =
dl

dφ
=

(
dl(φ)

dθ
,

dl(φ)

dβ

)T

are

U(θ) =
n
θ
+

n∑
i=1

log
(
1− exp

(
−z2

i

))
,

and

U(β) = n
β +

n∑
i=1

log(xi) −
n∑

i=1

bi
1−si

+
n∑

i=1

2xβi log(xi)−2mizi

2xβi −z2
i

+(θ− 1)
n∑

i=1

2miziexp(−z2
i )

1−exp(−z2
i )

,

where
bi = −xβi exp

(
−xβi

)
log(xi),

and
mi =

bi

s2
i

.

Setting the nonlinear system of equations U(θ) = 0 and U(β) = 0 and solving them simultaneously

yields the
ˆ
φ =

(
ˆ
θ,

ˆ
β

)T

. To solve these equations, it is usually more convenient to use nonlinear

optimization methods, such as the quasi-Newton algorithm to numerically maximize l(φ).

4.2. Cramer-Von-Mises Estimation Method

The Cramer-Von-Mises estimation method of the parameters is based on the theory of minimum
distance estimation (see [26]). The Crammer-Von-Mises estimates (CVMEs) of the parameter θ and β
are obtained by minimizing the following expression, with respect to (w.r.t.), the parameters θ and β,
respectively:

CVM(φ) =
1

12n
+

n∑
i=1

[
Fθ,β(xi) −

−1 + 2i
2n

]2
,
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then

CVM(φ) =
n∑

i=1

({
1− exp

[
−

[
exp

(
xβi

)
− 1

]2]}θ
−
−1 + 2i

2n

)2

.

The Cramer-Von-Mises estimates (CVMEs) of the parameters are obtained by solving the following
non-linear equations:

n∑
i=1

({
1− exp

[
−

[
exp

(
xβi

)
− 1

]2]}θ
−
−1 + 2i

2n

)
η(θ)(xi,φ) = 0,

n∑
i=1

({
1− exp

[
−

[
exp

(
xβi

)
− 1

]2]}θ
−
−1 + 2i

2n

)
η(β)(xi,φ) = 0,

where η(θ)(xi,θ, β) and η(β)(xi,θ, β) are the values of the first derivatives of the CDF of BXW distribution
w.r.t. θ, β, respectively.

4.3. Method of Percentile Estimation

Let γ(i) =
i

1+n be an estimate of F(φ)

(
x(i)

)
, then the percentile estimators (PerEs) of θ and β can be

obtained by minimizing the function

n∑
i=1

x(i) −

log

1 + √
−log

(
1− γ

1
θ

(i)

)


1
β


2

,

with respect to θ and β. Additionally, the PerEs can be obtained by solving the following nonlinear
equations:

0 =
n∑

i=1

x(i) −

log

1 + √
−log

(
1− γ

1
θ

(i)

)


1
β
τ(1)(φ)

(
x(i)

)
,

0 =
n∑

i=1

x(i) −

log

1 + √
−log

(
1− γ

1
θ

(i)

)


1
β
τ(2)(φ)

(
x(i)

)
,

where

τ
(1)
(φ)

(
x(i)

)
=

∂
∂θ

x(i) −

log

1 + √
−log

(
1− γ

1
θ

(i)

)


1
β


and

τ
(2)
(φ)

(
x(i)

)
=

∂
∂β

x(i) −

log

1 + √
−log

(
1− γ

1
θ

(i)

)


1
β
.

4.4. Method of L-Moments

The L-moments are analogous to the ordinary moments but can be estimated by linear combinations
of order statistics. They exist whenever the mean of the distribution exists, even though some higher
moments may not exist and are relatively robust to the effects of outliers. Based upon the moments of
the order statistics, we can derive explicit expressions for the L-moments of X as infinite weighted
linear combinations of the means of suitable BXW order statistics. The L-moments for the population
can be obtained from:

λ(r) =
1
r

r−1∑
d=0

(−1)d
(

r− 1
d

)
E
(
X(r−d : d)

)
|(r≥1).



Entropy 2020, 22, 592 10 of 24

The first four L-moments are given by

λ(1)(φ) = E
(
X(1:1)

)
= L(1)

λ(2)(φ) =
1
2

E
(
X(2:2) −X(1:2)

)
=

1
2

(
µ′2:2 − µ

′

1:2

)
= L(2),

where L(i)
∣∣∣
(i=1,2) is the L-moments for the sample. The L-moment estimators of the parameters θ and

β can then be obtained numerically.

5. Simulation Studies

5.1. Simulation Study for Assessing the Maximum Likilihood Method

5.1.1. Numerical Assessment

In this section, we study the performance and accuracy of maximum likelihood estimates of the
BXW model parameters by conducting various simulations for different sample sizes and different
parameter values. The method for generating samples from the BXW distribution is performed by
inverse CDF of BXW and uniform RV, as follows:

If

x =

log

1 + √
−log

(
1− u

1
θ

)


1
β

, (13)

where u ∼ U(0, 1), then X ∼ BXW(φ). The simulation study is repeated for N =

5000 times, each with sample size n = 100, 200, and 500 and parameter values (θ, β) =

(0.4, 2.5), (3, 0.02), (0.6, 0.6) and (0.19, 2.5). Two quantities are computed in this simulation study:

1. Average bias of the MLE
ˆ
ε of the parameter ε = θ, β:

Biasε(n) =
1

5000

5000∑
i=1

(
ˆ
εi − ε

)
.

2. Mean square error (MSE) of the MLE
ˆ
ε of the parameter ε = θ, β:

MSEε(n) =
1

5000

5000∑
i=1

(
ˆ
εi − ε

)2
.

Table 1 presents the Bias and mean square error (MSE) values of the parameters θ and β for
different sample sizes. From the results, we can verify that, as the sample size n increases, the MSEs
decay toward zero. We also observe that for all the parametric values, the biases decrease as the sample
size n increases.
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Table 1. Monte-Carlo simulation results: Average bias and MSE in parenthesis.

(θ,β) θ β

n = 100
(0.4,2.5) 0.018 (0.018) 0.180 (0.946)
(3,0.2) −0.114 (0.345) 0.008 (0.001)

(0.6,0.6) 0.002 (0.033) 0.053 (0.040)
(0.19,2.5) 0.038 (0.009) −0.257 (0.449)
n = 200
(0.4,2.5) −0.004 (0.010) 0.180 (0.424)
(3,0.2) −0.089 (0.172) 0.002 (5e−4)

(0.6,0.6) −0.001 (0.019) 0.031 (0.018)
(0.19,2.5) 0.015 (0.004) −0.206 (0.248)
n = 500
(0.4,2.5) 0.002 (0.003) 0.036 (0.125)
(3,0.2) −0.026 (0.068) −0.002 (3e−4)

(0.6,0.6) 0.001 (0.007) 0.008 (0.005)
(0.19,2.5) 0.006 (0.002) −0.164 (0.141)

5.1.2. Graphical Assessment

Graphically, we could perform the simulation experiments to assess the finite sample behavior of
the MLEs. The assessment was based on the following algorithm:

1. Use Equation (13) to generate 1000 samples of size n from the BXW distribution;
2. Compute the MLEs for the 1000 samples;
3. Compute the standard errors (SEs) of the MLEs for the 1000 samples (the standard errors (SEs)

were computed by inverting the observed information matrix).
4. Compute the biases and mean square errors given for θ, β.

We repeated these steps for n = 50, 100, . . . , 1000 with θ = 1, β = 1 computing biases and MSEs.
Figure 2 (left panel) shows how the two biases vary, with respect to n. Figure 2 (right panel) shows
how the two MSEs vary, with respect to n. The broken lines in Figure 2 correspond to the biases at
0. From Figure 2, the biases for each parameter are generally negative and decrease to zero as n→∞,
the MSEs for each parameter decrease to zero as n→∞.
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Figure 2. Biases (left panels) and MSEs (right panels) for θ, β, and n = 50, 100, . . . , 1000 for the
BXW model.

5.2. Simulation Studies for Comparing Non-Bayesian Estimation Methods

A Markov chain Monte-Carlo (MCMC) simulation study was performed for this
section to assess and compare the performance of the different estimators of the unknown
parameters of the new distribution. This performance was assessed using the average
values (AVs) of estimates and the mean square errors (MSEs). First, we generated
1000 samples of the BXW distribution, where n = (20, 50, 150, 300), and chose:

Parameters I II III

θ 2 0.6 6

β 0.5 0.4 0.1

The AVs and MSEs of MLEs, PerEs, and L-Moments were obtained and listed in Tables 2–5. From
Tables 2–5, we noted that all methods performed well.
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Table 2. Average values (AVs) and the corresponding MSEs for n = 20.

Parameters MLE CVM PerEs L-Moment

Θ = 2 2.123510 2.088200 2.043230 2.09791
(0.08387) (0.32986) (0.27218) (0.35417)

B = 0.5 0.51657 0.51770 0.50701 0.517620
(0.00877) (0.06045) (0.01224) (0.01580)

Θ = 0.6 0.64940 0.63391 0.66041 0.620200
(0.02499) (0.03179) (0.05275) (0.06030)

B = 0.4 0.413460 0.41341 0.432070 0.402780
(0.00592) (0.00965) (0.01652) (0.01904)

Θ = 6 6.55660 6.251720 6.284390 6.695530
(5.97827) (2.75560) (7.71943) (23.64994)

B = 0.1 0.103750 0.108850 0.095230 0.122000

Table 3. AVs and the corresponding MSEs for n = 50.

Parameters MLE CVM PerEs L-Moment

Θ = 2 2.04042 2.020530 1.9875600 2.028160
(0.11254) (0.11274) (0.09788) (0.13328)

B = 0.5 0.50549 0.50440 0.49716 0.50573
(0.00276) (0.00471) (0.00384) (0.00685)

Θ = 0.6 0.61713 0.61232 0.62687 0.609540
(0.00771) (0.01104) (0.01714) (0.02187)

B = 0.4 0.40422 0.40531 0.41483 0.40260
(0.00216) (0.00299) (0.00533) (0.00790)

Θ = 6 6.22870 6.14691 5.96776 6.212280
(1.82638) (1.04639) (4.01295) (8.14331)

B = 0.1 0.10169 0.10262 0.09246 0.11227

Table 4. AVs and the corresponding MSEs for n = 150.

Parameters MLE CVM PerEs L-Moment

Θ = 2 2.00870 2.01118 1.99028 2.01254
(0.03709) (0.03613) (0.03488) (0.03911)

B = 0.5 0.50107 0.50228 0.49783 0.50274
(0.00095) (0.00149) (0.00124) (0.00198)

Θ = 0.6 0.60668 0.60501 0.60609 0.60683
(0.00262) (0.00312) (0.00607) (0.00641)

B = 0.4 0.40272 0.40228 0.40332 0.40313
(0.00072) (0.00086) (0.00179) (0.00236)

Θ = 6 6.08709 6.00740 5.75105 6.08802
(0.49247) (0.28755) (2.26499) (2.31531)

B = 0.1 0.10068 0.10020 0.09448 0.10431

Table 5. AVs and the corresponding MSEs for n = 300.

Parameters MLE CVM PerEs L-Moment

Θ = 2 2.01328 2.01143 1.99373 2.00475
(0.01739) (0.01740) (0.01622) (0.01930)

B = 0.5 0.50197 0.50233 0.49867 0.50085
(0.00045) (0.00071) (0.00056) (0.00101)

Θ = 0.6 0.60395 0.60365 0.60186 0.60209
(0.00134) (0.00164) (0.00271) (0.00311)

B = 0.4 0.40181 0.40173 0.40109 0.40074
(0.00036) (0.00046) (0.00077) (0.00115)

θ = 6 6.02037 6.02330 5.56693 6.05655
(0.25345) (0.15614) (1.65906) (0.94734)

β = 0.1 0.10015 0.10042 0.09423 0.101650
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6. Non-Bayesian Uncensored Applications

6.1. Non-Bayesian Uncensored Applications for Comparing Models

We provided two applications with two real data sets to prove the flexibility of the BXW distribution.
We fitted some of the well-known two parameter lifetime distributions, such as the Weibull, gamma,
generalized exponential (GE) ([27]), exponential geometric (EG) ([28]), exponential Poisson (EP) ([29]),
and complementary exponential geometric (CEG) ([30]) distributions, into two real data sets.

The first data set was given by [31] on the prices of the 31 different children’s wooden toys on sale
in a Suffolk craft shop in April 1991. The data set consisted of 31 observations. The second data set
was an uncensored data set from [32], consisting of 34 observations on vinyl chloride data obtained
from clean upgradient monitoring wells in mg/L. These data were also analyzed by [33]. The MLE
of parameters, such as the maximized log-likelihood function, Akaike information criterion (AIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), consistent Akaike
information criterion (CAIC) ([30]), Anderson-Darling (A∗), and Cramer-von-Mises (W∗) statistics, were
determined by fitting the two parameter distributions using the two data sets. The statistics A∗ and W∗

were described by [34]. In general, the smaller values of these statistics showed the better fit to the data
sets. The MLEs were computed using the limited-memory quasi-Newton code for bound-constrained
optimization (L-BFGS-B). The estimated parameters, shown in Tables 6 and 7, were based on MLE
procedure reports, whereas the values of goodness-of-fit statistics are given in Tables 8 and 9. In the
applications, the information about the hazard shape helped in selecting a particular model. For this
aim, a device called the total time on test (TTT) plot ([35]) was useful.

Table 6. Parameter estimates and standard deviation in parenthesis for the first dataset.

Model Estimates Log-Likelihood

BXW (θ, β) 40.768 (7.32) 0.095 (10 × e−3) 73.565
Weibull (α, β) 1.227 (0.160) 4.557 (0.666) 74.788
Gamma (α, λ) 1.487 (0.184) 0.350 (0.051) 74.459

GE (α, λ) 1.560 (0.280) 0.309 (0.045) 74.396
EG (λ, p) 0.234 (0.042) 0.010 (0.280) 75.802
EP (λ, β) 0.011 (0.622) 0.235 (0.042) 75.795

CEG (λ, θ) 0.297 (0.047) 0.618 (0.190) 75.454

Table 7. Parameter estimates and standard deviation in parenthesis for second dataset.

Model Estimates Log-Likelihood

BXW (θ, β) 14.347 (2.46) 0.104 (90.01) 55.049
Weibull (α, β) 1.010 (0.125) 1.887 (0.320) 55.449
Gamma (α, λ) 1.062 (0.139) 0.565 (0.094) 55.413

GE (α, λ) 1.076 (0.184) 0.558 (0.092) 55.401
EG (λ, p) 0.481 (0.086) 0.177 (0.242) 55.395
EP (λ, β) 0.427 (0.596) 0.476 (0.085) 55.392

CEG (λ, θ) 0.532 (0.091) 0.999 (0.289) 55.453

Table 8. Formal goodness of fit statistics for the first dataset.

Model Goodness of Fit Criteria

AIC BIC HQIC CAIC W* A*

BXW 151.131 153.999 152.066 151.559 0.061 0.395
Weibull 153.577 156.445 154.512 154.006 0.118 0.713
Gamma 152.918 155.786 153.853 153.347 0.122 0.713

GE 152.793 155.661 153.728 153.222 0.120 0.705
EG 155.604 158.472 156.539 156.032 0.095 0.751
EP 155.590 158.458 156.525 156.019 0.095 0.749
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Table 9. Formal goodness of fit statistics for the second dataset.

Model Goodness of Fit Criteria

AIC BIC HQIC CAIC W* A*

BXW 114.098 117.151 115.139 114.485 0.032 0.227
Weibull 114.899 117.952 115.940 115.286 0.043 0.282
Gamma 114.826 117.879 115.867 115.213 0.050 0.312

GE 114.803 117.856 115.844 115.190 0.052 0.317
EG 114.791 117.844 115.832 115.178 0.032 0.240
EP 114.785 117.837 115.826 115.172 0.032 0.239

It is convex shape for decreasing hazards and a concave shape for increasing hazards.
The TTT plot for both data sets are presented in Figure 3. These figures indicate that the first and

second datasets have bathtub and constant failure rate functions. In both real data sets, the results
show that the BXW distribution yields a better fit than other distributions. These conclusions are also
confirmed by Figures 4–6.Entropy 2020, 8, x 16 of 25 
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6.2. Uncensored Applications for Comparing the Non-Bayesian Methods

Tables 10 and 11 give the values of estimators, along with the W∗ and A∗ statistics for all methods.
From Table 10, we conclude that the PerEs method was the best method for the first data; however,
all other methods performed well. From Table 11. we conclude that the L-moment method was the
best method for the second data; however, all other methods performed well.

Table 10. The values of estimators. W∗ and A∗ for all methods for the first data.

Method θ β W* A*

ML 40.768 0.095 0.05782 0.37572
CVM 35.997 0.087 0.05909 0.38163
PerEs 55.730 0.101 0.05551 0.36612

L-moment 42.097 0.098 0.05747 0.37407

Table 11. The values of estimators. W∗ and A∗ for all methods for the second data.

Method θ β W* A*

ML 14.347 0.105 0.02847 0.20972
CVM 17.784 0.097 0.02876 0.21271
PerEs 16.690 0.106 0.02910 0.21539

L-moment 14.672 0.109 0.02846 0.20934

7. Censored Maximum Likelihood Estimation

Suppose that X1, X2, . . . . . . , Xn is a random sample with right censoring from the BXW distribution.
The observed data xi = min(Xi, Ci); i = 1, 2, . . . , n are the minimum of the survival time Xi and
censoring time Ci for each subject in the sample. Therefore, xi can be written in the form (xi, δi)i=1,...,n,
where δi = 1 if Xi is the moment of failure (complete observation) and δi = 0 if Xi is the moment of
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censoring. The right censoring was assumed to be non-informative, so the expression of the likelihood
function is:

lφ(x) = Πn
i=1 fφ(xi)

δiRφ(xi)
1−δi

∣∣∣∣δi=1Xi<Ci
,

where Rφ(xi) refers to the RF. The log-likelihood function of the BXW distribution is:

L(φ) =
n∑

i=1

δiln f (xi,ϕ) +
n∑

i=1

(1− δi)lnRφ(xi)

=
n∑

i=1

δi

 ln(2θβ) + (β− 1)ln(xi) + 2xβi −
(
exβi − 1

)2

−(1− θ)ln
(
1− exp

{
−

[
exβ
− 1

]2
})


+

n∑
i=1

(1− δi)ln
[
1−

(
1− exp

{
−

[
exβ
− 1

]2})θ]
and the score functions are obtained as follows:

∂L(φ)

∂θ
=

n∑
i=1

δi

[ 1
θ
+ ln(1− e−z2

i )
]
−

n∑
i=1

(1− δi)

(
1− e−z2

i )θln(1− e−z2
i

)
1− (1− e−z2

i )
θ

∂L(φ)
∂β =

n∑
i=1

δi

 1
β +

six
β
i lnxi

1−si
−

2(1−θ)zix
β
i ln(xi)e

x
β
i −z2

i

1−e−z2
i

+ln(xi) + 2xβi ln(xi)
(
1− ziexβ

)


−

n∑
i=1

(1− δi)
2θzix

β
i ln(xi)e

x
β
i −z2

i
(
2xβi −z2

i

)θ−1

1−(1−e−z2
i )
θ ,

with
zi = exβi − 1, si = e−xβi

Maximum likelihood estimators of the unknown parameters can be obtained using
various techniques, such as software R, the Expectation–maximization (EM) algorithm, or the
Newton–Raphson method.

8. Modified Chi-Squared Type Test for Right Censored Data

Methods for testing the validity of parametric models are in constant development, but the presence of
censorship make them unavailable. [36,37] proposed a modified chi-squared test based on Kaplan–Meyer
estimators. [38] considered modifications of the Kolmogorov–Smirnov statistic, Anderson–Darling statistic,
and the Cramer-Von-Mises statistic for accelerate failure models. In this work, we are interested in the
modified chi-squared type test, proposed by [39–41] for parametric models with right censored data. Based
on maximum likelihood estimators on non-grouped data, this statistic test is also based on the differences
between the numbers of observed failures and the numbers of expected failures in the grouped intervals
chosen. For this, random grouping intervals are considered as data functions. The description of the
construction of this chi-squared type test was developed by [42]. The statistic test was defined as follows.
Suppose that X1, X2, . . . , Xn is a random sample with right censoring from a parametric model and a finite
time τ. The statistic test is defined as follows:

Y2
n =

n∑
j=1

(
U j − e j

)2

U j
+ Q
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where U j and e j are the observed and expected numbers of failure in grouping intervals and Q is:

Q = WT
ˆ
G
−

W,

ˆ
W =

ˆ
C

ˆ
A
−1

Z =

(
ˆ

W1, . . . ,
ˆ

Ws

)T

,

Z j =
1
√

n

(
U j − e j

)
Wl =

r∑
j=1

ˆ
Cl j

ˆ
A
−1

j Z j,

ˆ
G =

[
ˆ
gll′

]
s×s

,

ˆ
gll′ =

ˆ
ıll′ −

r∑
j=1

ˆ
Cl j

ˆ
Cl′ j

ˆ
A
−1

j , i = 1, . . . , n, j = 1, . . . , r, l, l′ = 1, . . . , s

The limits a j of r random gouging intervals I j =
[
a j−1, a j

]
were chosen, such as the expected

failure times to fall into these intervals, which were the same for each; j = 1, . . . , r− 1,
ˆ
ar = max

(
x(l), τ

)
.

The estimated
ˆ
a j is defined by

ˆ
a j = H−1


E j −

∑i−1
l=1 H ˆ

φ
(xl)

n− i + 1
,

ˆ
φ

,
ˆ
ar = max

(
x(n),τ

)
where H ˆ

φ
(xl) is the cumulative HRF (CHRF) of the model distribution. This statistic test Y2

n follows

a chi-squared distribution.

8.1. Choice of Random Grouping Intervals

Suppose that X1, X2, . . . . . . , Xn is a random sample with right censoring from the BXW distribution

and a finite time τ. In our case, the estimated
ˆ
a j is obtained as follows:

ˆ
a j =

ln
1±

√√√√√√√√√
−ln

1−

1− exp


∑i−1

l=1 H ˆ
φ
(xl) − E j

n− i + 1




1/θ



1/β

where
ˆ
φ = (

ˆ
θ,

ˆ
β)

T

is the maximum likelihood estimator of the unknown parameters ϕ = (θ, β)T on
initial data and H ˆ

φ
(xl) is the cumulative hazard rate function of the BXW distribution.

8.2. Quadratic Form Q

To calculate the quadratic form Q of the statistic Y2
n, and, as its distribution doesn’t depend on

the parameters, we can use the estimated matrices
ˆ

W and
ˆ
C and the estimated information matrix

ˆ
I.

The elements of
ˆ
C defined by

ˆ
Cl j =

1
n

n∑
i : xi∈I j

δi
∂

∂
ˆ
φl

lnh ˆ
ϕ
(xi)
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are obtained as below
ˆ
C1 j =

1
n

n∑
i : xi∈I j

δi

 1
θ
+

ln(1− e−z2
i )

1− (1− e−z2
i )
θ


ˆ
C2 j =

1
n

n∑
i : xi∈I j

δi


1
β + ln(xi) +

six
β
i lnxi

1−si
+

2θzix
β
i ln(xi)e

x
β
i −z2

i
(
2xβi −z2

i

)θ−1

1−(1−e−z2
i )
θ

−
2(1−θ)zix

β
i ln(xi)e

x
β
i −z2

i

1−e−z2
i

+ 2xβi ln(xi)
(
1− ziexβ

)


Therefore, the estimated matrix
ˆ

W can be deducted from
ˆ
C.

8.3. Estimated Information Matrix
ˆ
I

We need also the information matrix
ˆ
I of the BXW distribution with right censoring. After difficult

calculations and some simplifications, we obtained the elements of the matrix, as follows:

ˆ
ı11 =

1
n

n∑
i=1

δi

 1
θ
+

ln(1− e−z2
i )

1− (1− e−z2
i )
θ


2

ˆ
ı22 =

1
n

n∑
i=1

δi


1
β + ln(xi) +

six
β
i lnxi

1−si
+

2θzix
β
i ln(xi)e

x
β
i −z2

i
(
2xβi −z2

i

)θ−1

1−(1−e−z2
i )
θ

−
2(1−θ)zix

β
i ln(xi)e

x
β
i −z2

i

1−e−z2
i

+ 2xβi ln(xi)
(
1− ziexβ

)


2

ˆ
ı12 = 1

n

n∑
i=1

δi

 1
θ +

ln(1−e−z2
i )

1−(1−e−z2
i )
θ


×


1
β + ln(xi) +

six
β
i lnxi

1−si
+

2θzix
β
i ln(xi)e

x
β
i −z2

i
(
2xβi −z2

i

)θ−1

1−(1−e−z2
i )
θ

−
2(1−θ)zix

β
i ln(xi)e

x
β
i −z2

i

1−e−z2
i

+ 2xβi ln(xi)
(
1− ziexβ

)


As all the components of the statistic were given explicitly, we then obtained the statistic test
for the BXW distribution with unknown parameters and right censored data. This statistic follows
a chi-squared distribution with r degrees of freedom:

Y2
n

(
ˆ
φ

)
=

r∑
j=1

1
U j

(
U j − e j

)2
+

ˆ
W

T
ˆ
ıll′ −

r∑
j=1

ˆ
Cl j

ˆ
Cl′ j

ˆ
A
−1

j


−1

ˆ
W.

9. Simulations

An important simulation study is carried out to show the performance of the techniques used and
the feasibility of the goodness-of-fit test developed in this work. To this end, we generated N = 10, 000
right censored samples with different sizes, n1 = 20 and n2 = 50, n3 = 150, n4 = 300, from the BXW
model with different parameters. Firstly, we computed the MLEs of the unknown parameters, then the
criteria Y2 of the corresponding samples were provided.
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9.1. Censored Maximum Likelihood Estimation for BXW

Using R statistical software and the Barzilai–Borwein (BB) algorithm (see [43]), we calculated the
maximum likelihood estimators of the unknown parameters, the corresponding bias, and mean square
errors (MSEs). The results are given in Table 12.

Table 12. Biases and MSEs.

N = 10,000 n1 = 20 n2 = 50 n3 = 150 n4 = 300

θ = 1.5 1.4838 (0.0076) 1.4884 (0.0062) 1.4922 (0.0045) 1.4983 (0.0023)
β = 0.7 0.7192 (0.0089) 0.7137 (0.0077) 0.7096 (0.0057) 0.7043 (0.0034)
θ = 0.8 0.8213 (0.0082) 0.8126 (0.0058) 0.8084 (0.0032) 0.8012 (0.0016)
β = 0.5 0.4828 (0.0076) 0.4877 (0.0052) 0.4912 (0.0037) 0.4996 (0.0018)
θ = 3 2.9696 (0.0094) 2.9776 (0.0066) 2.9894 (0.0042) 2.9982 (0.0027)
β = 0.4 0.4331 (0.0068) 0.4284 (0.0044) 0.4167 (0.0029) 0.4024 (0.0013)

9.2. Test Statistic Y2

For testing the null hypothesis H0, that right censored data come from the BXW model,
we computed the criteria statistic Y2

n(φ), as defined above, for 10, 000 simulated samples from the
hypothesized distribution with different sizes (n = 20, 50, 150, 300). We then calculated empirical levels
of significance, when Y2 > χ2

ε(r), correponding to theoretical levels of significance (ε = 0.10, 0.05, 0.01).
We chose r = 5. The results are reported in Table 13.

Table 13. Simulated levels of significance for the Y2
n(φ) test for the BXW model against their theoretical

values (ε = 0.01, 0.05, 0.10).

N = 10,000 n = 20 n = 50 n = 150 n = 300

ε = 1% 0.0055 0.0064 0.0085 0.0094
ε = 5% 0.0443 0.0452 0.0468 0.0486
ε = 10% 0.0931 0.0943 0.0959 0.0974

The null hypothesis H0, for which simulated samples were fitted by BXW distribution, is widely
validated for the different levels of significance. Therefore, the test proposed in this work can be used
to fit data from this new distribution.

10. Data Analysis

[44] gave data from a laboratory investigation and the number of T days until onset of carcinoma
was recorded. The data below concerns a group of 19 rats (Group 1 in Pike’s article). The two
observations with asterisks are censorship times, where the data are: 143,164,188, 188, 190, 192, 206,
209, 213, 216, 216 *, 220, 227, 230, 234, 244 *, 246, 265, and 304 (* indicates the censorship). We used the
statistics test provided above to verify if these data were modeled by BXW distribution, and, to that
end, we first calculated the maximum likelihood estimators of the unknown parameters:

ˆ
ϕ =

(
ˆ
θ,

ˆ
β

)T

= (1.536, 0.063)T.

Data were grouped into r = 4 intervals, I j. We give the necessary calculus in Table 14.
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Table 14. Values of
ˆ
a j, e j, U j,

ˆ
C1 j, and

ˆ
C2 j.

ˆ
a j 189.6 214.9 237.7 304
UJ 4 5 6 4
ˆ
C1 j

0.9463 1.2416 0.8863 0.7648
ˆ
C2 j

1.1346 0.9946 1.2476 0.9263

e j 0.4859 0.4859 0.4859 0.4859

We then obtained the value of the statistic test Y2
n:

Y2
n = X2 + Q = 4.106 + 3.5396 = 7.6456

For significance level ε = 0.05, the critical value χ2
4 = 9, 4877 was superior than the value of

Y2
n = 7.6456, so we can say that the proposed BXW model fit these data.

11. Conclusions

In this paper, we proposed a new two-parameter Weibull (W) lifetime model based on the Burr
X-G (BX-G) class, called the Burr X Weibull (BXW) distribution, which extends the well-known W
model. An obvious reason for generalizing a standard distribution is the fact that the generated model
can provide more flexibility to analyze real-life data. We provided some of its mathematical and
statistical properties. The BXW density function can be expressed as a linear mixture of exponentiated
Weibull PDFs. It is shown, from the plots of the PDF and HRF of the BXW model, that this distribution
is very flexible, accommodating a large number of shapes in the hazard function, such as “increasing”,
“decreasing”, “upside down”, and “bathtub” (U-HRF). We derived explicit expressions for the ordinary
and incomplete moments, quantile and generating functions, and moments of the residual life and
reversed residual life model. We also obtained the PDFs of the order statistics and their moments.
We discussed the estimation of the model parameters by maximum likelihood, along with numericak
and graphical assessemnt via simulation studies. The model parameter was estimated by different
methods of estimation, named the maximum likelihood method, the method of Cramer-Von-Mises
estimation, the method of percentile estimation. And the method of L-moments. MCMC simulations
and two applications were performed to compare the estimation methods. The proposed distribution
was applied to two real data sets, which provides a better fit than several other competitive nested and
non-nested models. We hope that the proposed model will attract wider application in areas such as
engineering, survival, and lifetime data, meteorology, hydrology, economics, and others. Using the
approach of the Bagdonavicius–Nikulin goodness-of-fit test for the right censored validation, we
propose and apply a modified chi-square goodness-of-fit test for the BXW model. The modified
goodness-of-fit statistic test is applied for a right censored real data set. Based on the censored
maximum likelihood estimators on initial data, the modified goodness-of-fit test recovers the loss of
information, while the grouped data follows the chi-square distribution. The elements of the modified
criteria tests are derived. A real data application related to the laboratory investigation is for validation
under the uncensored scheme.
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